Are there Health Risks with WiFi?

Radiation is used to treat malignant tumors, x-rays can help doctors diagnose internal injuries, and we are all exposed to various types of radiation through radio waves, televisions, and cellphones. Lately, questions have been raised in Ontario to the health risks related to WiFi emissions.

In recent years, leaders in the health field, politicians, and even school boards have attempted to mitigate the perceived threat of exposure to radio-frequency (RF) electromagnetic (EM) radiation, on which WiFi, radios, microwaves, Bluetooth, and mobile and cordless phones operate. The perceived threat of RF exposure might have been exacerbated when, in May 2011, the World Health Organization (WHO) released a document from the International Agency for Research on Cancer (IARC) which classified these types of EM emissions as a Group 2B, “possibly carcinogenic” agent to humans – alongside with other substances like aloe vera and carrageenan – for which the evidence of deleteriousness is uncertain. Since the update of this WHO document, many health experts have raised concerns about the risks associated with mobile phones; political leaders have gone on the record warning the public of potential health risks that can be incurred through the use of WiFi, and unions, including the Canadian Teachers’ Federation, are calling for a moratorium on WiFi device use in schools suggesting an outright ban of the technologies.

However, do we actually know the health effects of RF exposure, and, in particular, the risks associated with WiFi use? Let’s look at some of the potential health hazards related to WiFi use; what WiFi supporters are saying, and methods of lowering personal exposure to WiFi emissions.

Potential Health Concerns

1. Disturbances to Sleeping Patterns

A study conducted in 2007 by Hung, Anderson, Horne, and McEvoy evaluated low-frequency modulation transmissions from cellphones and its impact on sleep. Study participants were exposed to emissions produced by real phones through ‘talk’, ‘listen’, and ‘standby’ modes or interacted with sham (fake) phones. Subjects who engaged in talk mode had a markedly delayed sleep onset in relation to participants who engaged in listen and sham modes. Researchers also noticed that different frequencies and strengths in emission modulations (2, 8, and 217 Hz) could affect sleep onset differently.

Many researchers have concluded that keeping a phone near your bed, being exposed to in-home WiFi signals, or interacting with WiFi technologies prior to engaging in sleep can create chronic sleep disorders as EM pollution interferes with falling asleep and establishing healthy sleeping patterns (Bordely, Huber, Graf, Fuchs, Gallmann, & Achermann, 1999; Hung, Anderson, Horne, & McEvoy, 2007; National Sleep Foundation, 2014). Sleep deprivation is just the beginning to larger health problems. Decreases in sleep duration and delayed sleep onset can result in the development of depression and anxiety (Adams, Daly, & Williford, 2013; Cain & Gradisar, 2010; Harbard, Allen, Trinder, & Bei, 2016; Munezawa et al., 2011).

2. Effects to Cell Function and Growth

Exposure to non-ionizing, low-frequency EM emissions from WiFi technology and cellular devices can disrupt the development and growth of cells (Makker, Varghese, Desai, & Agarwal, 2009; Hardell & Sage, 2008). A 2009 Austrian study found that the expression levels of 38 cytoskeletal proteins (proteins that form the supporting tissue of a cell) had changed after being exposed to cellphone EM radiation (The AUVA Report, 2009). These researchers were able to determine that different tissues had varying sensitivities to EM emissions, and that cellphone radiation exposure caused “a notable change in protein synthesis profiles” (AUVA Report, 2009, p. 4). Consequently, members of the population with disease or pathophysiological conditions might see their symptoms worsen and some neurological disorders can be triggered by high rates of protein synthesis (AUVA, 2009; Makker et al., 2009).

3. Impedes Neural Function in Females

A study conducted at the National Technical University of Athens examined the influence of electromagnetic fields, similar to those that are emitted by WiFi systems, on activity within the brain (Maganioti et al., 2014). Fifteen male and fifteen female subjects performed short term memory tasks without being exposed to any EM emissions. These participants were then exposed to a 2.4 GHz WiFi access point at a distance of 1.5 meters from the right side of the head. Each non-exposure and exposure interval lasted 45 minutes. Two weeks later, participants then performed the same memory tasks in the same intervals two weeks later. Researchers noticed that in the presence of radiation, the alpha and beta band energies of male subjects were unaffected. However, in female subjects, these same energies were significantly lower. Researchers evaluated the condition of delta and theta band energies in both male and female participants, with no noteworthy effect between genders. Conversely, there was a significant interaction effect on the alpha and beta wave forms in some of the participants (Maganioti et al., 2014). This study has shown that WiFi signal emissions can influence normal physiological conditions by changing gender related corticol excitability in the alpha and beta rhythmic waveforms.

What do we know?

Different technologies emit different levels of EM radiation. Vecchia et al., (2009) from the International Commission on Non-Ionizing Radiation Protection (ICNIRP) conducted reviews on the health effects of EM emission exposure, particularly the radiation that is emitted by cellphones and WiFi access points. The commission concluded that mobile phones radiation exposure is localized to the head, and is relatively low EM intensity radiation. WiFi emissions are absorbed by the whole body at much lower intensities than those produced by mobile phones. When study participants reported symptoms, such as headaches, nausea, or fatigue, researchers were not able to causally relate EM emission exposure to these changes in health conditions. These conclusions supported findings from Public Health England where signals from WiFi routers are “typically 0.1 watt (100 milliwatts) …and the results so far show exposures are well within the internationally-accepted guidelines from the International Commission on Non-Ionizing Radiation Protection (ICNIRP).” Whether these small changes in functional performance are significant remains elusive, and more robust research is required to determine the nature and consequences of these effects as they relate to EM emission exposure.

The ICNIRP report (2009) also noted that there are some indications that EM emissions could influence blood flow in different cerebral regions, thought to correlate to changes in neural activity, particularly in the alpha and beta rhythms, during and following EM radiation exposure. However, it is unclear as to the reliability of findings because no consistent effects on cognitive performance have been found.

Regarding the impacts of RF radiation on cell development and growth, a review of evidence by Health Canada stated, “As long as RF energy levels remain below Health Canada’s RF safety guidelines, current scientific evidence supports the assertion that RF energy emissions from Wi-Fi devices are not harmful.” These conclusions are in line with the findings with other international bodies and regulators, including the WHO, the ICNIRP, Public Health England, and the Institute of Electrical and Electronics Engineers (IEEE).

Potential Precautions

Ultimately, it is the choice of the user to take necessary precautions to guard against potential harmful emissions. WiFi technology has only been a ubiquitous technology for a short period of time (between 15-20 years). Even Health Canada, the WHO, and the IEEE have recommended that more research is needed to determine if there are links between RF radiation, cancer, and cognitive dysfunction.  But in the meantime, if you wanted to lower RF emission exposures from mobile phones for yourself and your children, you can follow these guidelines from the American Academy of Pediatrics Cell Phone Safety Tips for Families:

  • Use text messaging when possible, and use cell phones in speaker mode or with the use of hands-free kits.
  • When talking on the cell phone, try holding it an inch or more away from your head.
  • Make only short or essential calls on cell phones.
  • Avoid carrying your phone against the body like in a pocket, sock, or bra. Cell phone manufacturers can’t guarantee that the amount of radiation you’re absorbing will be at a safe level.
  • If you plan to watch a movie on your device, download it first, then switch to airplane mode while you watch in order to avoid unnecessary radiation exposure.
  • Keep an eye on your signal strength (i.e. how many bars you have). The weaker your cell signal, the harder your phone has to work and the more radiation it gives off. It’s better to wait until you have a stronger signal before using your device.
  • Avoid making calls in cars, elevators, trains, and buses. The cell phone works harder to get a signal through metal, so the power level increases.

Additionally, WiFi users can lower RF radiation exposure in several ways:

  • Turn off your WiFi before sleeping.
  • Eliminate WiFi by installing ethernet cable or ActionTec box sets.
  • Disable wireless functions on your devices when not in use.

Have you experienced any health effects from RF exposure? Do you take precautions to minimize your RF exposure? Please provide any additional information, research, and experiences in the comment section below.

References

  1. Adams, S. K., Daly, J. F., & Williford, D. N. (2013). Adolescent sleep and cellular phone use: Recent trends and implications for research. In Health Services Insights, 6, 99-103. doi: 10.4137/HIS.S11083
  2. Austrian AUVA Insurance Company. (2009). AUVA Report: Nonthermal effects confirmed; exposure limits challenged; precaution demanded. Retrieved from http://www.emrpolicy.org/news/headlines/2009_auva-report_english.pdf
  3. Bordely, A. A., Huber, R., Graf, T., Fuchs, B., Gallmann, E., & Achermann, P. (1999). Pulsed high-frequency electromagnetic field affects human sleep and sleep electroencephalogram. In Neuroscience Letters, 275(3), 207-210. Retrieved from http://www.sciencedirect.com.uproxy.library.dc-uoit.ca/science/article/pii/S0304394099007703
  4. Cain, N., & Gradisar, M. (2010). Electronic media use and sleep in school-aged children and adolescents: A review. In Sleep Medicine, 11(8), 735-742. doi: 10.1016/j.sleep.2010.02.006
  5. Harbard, E., Allen, N. B., Trinder, J., & Bei, B. (2016). What’s keeping teenagers up? Prebedtime behaviors and actigraphy-assessed sleep over school and vacation. In Journal of Adolescent Health, 58(4), 426-432. doi: 10.1016/j.jadohealth.2015.12.011
  6. Hardell, L., & Sage, C. (2008). Biological effects from electromagnetic field exposure and public exposure standards. In Biomedicine & Pharmacotherapy, 62(2), 104-109. doi: 10.1016/j.biopha.2007.12.004
  7. Hung, C., Anderson, C., Horne, J. A., & McEvoy, P. (2007). Mobile phone ‘talk mode’ signal delays EEG-determined sleep onset. In Neuroscience Letters, 421(1), 82-86. doi: http://dx.doi.org/10.1016/j.neulet.2007.05.027
  8. Maganioti, A. E., Papageorgiou, C. C., Hountala, C. D., Kyprianou, M. A., Rabavilas, A. D., Papadimitriou, G. N., & Capsalis, C. N. (2014). Wi-Fi electromagnetic fields exert gender related alterations on EEG. In Retrieved from http://www.wifiinschools.org.uk/resources/Maganioti+etal+2010.pdf
  9. Makker, K., Varghese, A., Desai, N. R., & Agarwal, A. (2009). Cell phones: modern man’s nemesis? In Reproductive BioMedicine Online, 18(1), 148-157. http://dx.doi.org/10.1016/S1472-6483(10)60437-3
  10. Munezawa, T., Kaneita, Y., Osaki, Y., Kanda, H., Minowa, M., Suzuki, K., … Ohida, T. (2011). The association between use of mobile phones after lights out and sleep disturbances among Japanese adolescents: A nationwide cross-sectional survey. In SLEEP, 34(8), 1013-1020. doi: 10.5665/SLEEP.1152
  11. National Sleep Foundation. (2014). 2014 sleep in America poll: Sleep in the modern family. Retrieved from https://sleepfoundation.org/sites/default/files/2014-NSF-Sleep-in-America-poll-summary-of-findings—FINAL-Updated-3-26-14-.pdf
Advertisements

6 thoughts on “Are there Health Risks with WiFi?”

  1. After reading your article I am feeling a little weary on how much radiation is happening in my home and around my family. But, I have to wonder if there is really any way of truly avoiding it. I don’t even have an ethernet port on my computer to be able to hardwire the internet. If I had to turn off my wi-fi every night on top of everything else I have to do in a day, it would likely fall to the wayside. My health and the health of my family are very important but I fear we are a generation of people who will enter our elder years with a plethora of new disease related to the increased use of technology. I only hope that in future generations, innovations around protection from the side effects of technology are made and can reduce the impact on our great-grandchildren.
    Thanks for a very good read and eye opener, a topic I think gets swept under the rug and avoided too often.

    Liked by 1 person

    1. Thank you for the thoughtful provoking reply, Shannon. I too struggle with what potential hazards new technologies present to our health. I know that the emission levels from WiFi access points are relatively low in comparison to other technologies like cellphones. I’m worried that we are overexposing our children and ourselves because of all the technologies that emit RF radiation. What is too much? Why do some countries have lower exposure guidelines than Canada? What do they know that we don’t? I have always been someone that questions, and likes to err on the side of caution until more longitudinal research can be acquired.

      I know that were are embracing these technologies because of the convenience that they can provide. But, are we sacrificing the health of future generations to make our lives “easier” today? I liked your comment, Shannon, about potential technologies that could be used to mitigate emissions from wireless devices. My next step now is to do further research into reducing emissions in my home; taking steps to turn off devices when they are not in use, and potentially cutting back altogether.

      Like

      1. Hmm. I have come across two articles, one from the National Cancer Institute, suggesting there is minimal to no risk for using cell phones – see https://www.cancer.gov/about-cancer/causes-prevention/risk/radiation/cell-phones-fact-sheet#q6

        The second article from a less reputable source, presents are very logical argument about any radio frequency device poses little to no risk – see https://www.howtogeek.com/234817/dont-worry-wi-fi-isnt-dangerous/

        This poses the classic – “Who do we believe on the Web” dilemma. I am inclined to side with the above two articles, if only because I am getting lost in the details of the evidence you present above. That said, I think smart use of these devices is a good idea and you provide some good suggestions.

        Liked by 2 people

  2. Josh you bring up a ton of great evidence that sheds light on the possible health risks associated with WiFi. I tend to side with Robin in regards to the risks of being negatively impacted by WiFi. There are a couple other more pertinent issues regarding handheld devices such as car accidents involving distracted drivers and people who suffer from Computer Vision Syndrome. Due to the recent proliferation of handheld devices, the long-term health effects of this technology will be hard to predict. Only time will tell.

    Liked by 1 person

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s